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1. Introduction to Rock Properties 
The most important fact about reservoir rocks is that, by definition, they 
are not completely solid, but rather are porous to one degree or another. 
The degree to which they are porous is quantified by a parameter known 
as the porosity. The fact that the rocks are porous allows them to hold 
fluid. If these pores are interconnected, which they are in most rocks, 
then the fluid is able to flow through the rock, and the rock is said to be 
permeable. The ability of a rock to allow fluid to flow through it is 
quantified by a parameter called the permeability. As the porosity 
controls the amount of oil or gas that the rock can hold, and the 
permeability controls the rate at which this oil or gas can flow to a well, 
these two parameters, porosity and permeability, are the most important 
attributes of a rock, for reservoir engineering purposes. 

It would be very advantageous to petroleum engineers if the pore space 
of a reservoir were completely filled with hydrocarbon fluid. 
Unfortunately, this is never the case, and the pores always contain a 
mixture of hydrocarbons and water. The relative amounts of oil, gas or 
water are quantified in terms of parameters known as the fluid 
saturations. These saturations are in turn controlled by the surface 
interactions between the rock and the various fluids, which can be 
described and quantified in terms of properties known as wettability and 
surface tension. 

The ability of a rock to store fluid, and the relationship between the 
amount of fluid stored in the rock and the pressure of the fluid, is related 
to the porosity, and specifically to the way that the porosity changes as 
the pore pressure changes. The relationship between porosity and 
pressure is quantified by an important mechanical property known as the 
pore compressibility. 

Aside from properties such as porosity, permeability, and 
compressibility, which are obviously of crucial importance in reservoir 
engineering, there are other petrophysical (“petros” = rock, in Greek) 
properties that are important, but for less obvious reasons. One such 
property is the electrical resistivity. Although the resistivity is not directly 
related to the oil, it is controlled mainly by the amount of water in the 
rock, and so knowledge of the electrical resistivity gives us valuable 
information on the relative amounts of oil and water in the rock.  



MSc in Petroleum Engineering/Geoscience/Geophysics       Rock Properties     RW Zimmerman     Page 2 
   
 

  
Imperial College London                                                          Department of Earth Science and Engineering 

In this introductory module on rock properties, we will define the various 
parameters mentioned above, present some simple models to relate 
these properties to the pore structure of the rock, and give some 
indication of how these properties are used in petroleum engineering. 
The definitions and relationships given in this module will be used 
extensively throughout the rest of the course. 

2. Porosity 
2.1. Definition of Porosity 
If one looks at a typical cylindrical core of rock, with radius R and length 
L, it would have an apparent volume, or bulk volume, of Vb = π R2L. But 
on a smaller scale, such as under a microscope (Fig. 2.1), it would be 
clear that some of this volume is occupied by rock minerals, and some of 
it is void space. 

             

Fig. 2.1. Schematic of a porous sandstone, showing grains and pore 
space. Typical grain sizes are tens to hundreds of microns. 

We can now define the mineral volume of this core, Vm, as the actual 
volume occupied by minerals. Lastly, we define the pore volume, Vp, as 
the volume of the void space contained in this cylindrical core. These 
volumes are obviously related by  

Vb = Vm + Vp .          (1) 

The fraction of the cylinder that is occupied by pore space is known as 
the porosity, and is usually denoted by φ (although sometimes by n): 

φ = Vp /Vb .            (2) 
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The porosity of a reservoir rock can range from a few percent, to as high 
as 40%. 

A distinction is often made between primary porosity, which is the 
porosity that the sandstone (say) had after it was first deposited and 
compacted, and secondary porosity, which is any porosity that is 
subsequently created through mineral dissolution, mineral deposition, 
fracturing, etc. 

One very important type of secondary porosity is the porosity contained 
in natural fractures. Many reservoirs, which collectively contain roughly 
half of all known oil reserves, are naturally fractured. These reservoirs 
are often filled with an interconnected system of fractures. The porosity 
contained in these fractures is usually on the order of 0.1-1.0%, and is 
much less than the primary porosity. But the fracture network typically 
has a much higher permeability than the unfractured rock, often by 
several orders of magnitude. These types of reservoirs are referred to as 
dual-porosity reservoirs. Producing oil from such reservoirs is more 
problematic than producing oil from unfractured reservoirs.  

Another distinction that can be made is between total porosity, which is 
essentially the porosity that is defined by eq. (2), and effective porosity, 
which measures only the pore space that is interconnected and which 
can potentially form a flow path for the hydrocarbons. The total porosity 
is therefore composed of effective/interconnected porosity, and 
ineffective/unconnected porosity. In most rocks, there is little ineffective 
porosity. One important exception are carbonate rocks called diatomites, 
in which most of the porosity is unconnected. The Belridge oilfield in 
central California has produced 1.5 billion barrels of oil from a diatomite 
reservoir that has porosities ranging from 45-75%, most of which is 
unconnected and not “effective”! But this is a special case that requires 
special production methods, and is not typical of the reservoirs that will 
be the focus of most of this course. 

2.2. Heterogeneity and “Representative Elementary Volume” 
The property of porosity introduces an issue, that of heterogeneity, 
which is important for all petrophysical properties. To say that a reservoir 
is heterogeneous means that its properties vary from point to point. In 
one sense all rock masses are heterogeneous, because, as we move 
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away from a given rock at a given location, we will eventually encounter 
a different rock type. For example, some reservoirs contain beds of 
sands and shales, with thicknesses on the order of a few meters, such 
as in Fig. 2.2. These reservoirs are heterogeneous on length scales on 
the order of tens of meters. 

     

 

Shale 

Sand
AND 

10 m 

 

Fig. 2.2. Sand-shale sequence in a reservoir. Such a reservoir is 
homogeneous on a length scale of a few centimetres, but 
heterogeneous on a length scale of a few meters. 

At the other extreme of length-scale, all porous rocks are heterogeneous 
on the scale of the pore size. Consider Figure 2.3a, where x1 and x2 are 
two locations in the rock. If we ask “what is the porosity at location x1”?, 
the answer would be “0”, because point x1 lies in a sand grain. On the 
other hand, point x2 lies in a pore, so, strictly speaking, the porosity at x2 
is 1. Clearly, it makes no sense to talk about the porosity at some 
infinitely small mathematical point in the reservoir. When we discuss the 
porosity, we implicitly are referring to the average porosity in some small 
region. 

(a)      (b)  

Fig. 2.3. (a) Porosity at x1 is 0, and at x2 is 1, illustrating that porosity 
must not be defined at a point, but over a volume. (b) φ(R) can be 
defined as an average over a region of radius R (length of the arrow). 
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Imagine that we could measure the porosity in a small spherical region 
of rock, of radius R, surrounding the point x2, as in Fig. 2.3b. Let’s 
denote this average value as φ(R). For very small values of R, φ(R) 
would be 1. As R gets larger, the spherical region encompasses some of 
the nearby sand grains, and so φ(R) will decrease. In a typical 
sandstone, φ(R) will fluctuate with R, but eventually stabilise to some 
constant value. Eventually, as R gets large enough that the region 
crosses over into the next rock type, φ(R) might change abruptly. 
Schematically, we can represent this situation as in Fig. 2.4 (Bear, 
Dynamics of Fluids in Porous Media, 1972): 

  

R 

φ 

1 

0 
REV  

Fig. 2.4. Porosity as a function of the size of the sampling region, 
showing the existence of an REV. 

The minimum value of R needed for the porosity to stabilise is known as 
the “representative elementary volume” (REV), or as the “representative 
volume element” (RVE). When we talk about the porosity, we are usually 
implicitly referring to the porosity as defined on a length scale at least as 
large as the REV. 

For sandstones with a uniform grain size distribution, the REV must be 
at least about ten grain diameters. However, for heterogeneous rocks 
such as many carbonates, the REV may be much larger, as 
heterogeneity may exist at many scales. In fact, there is no guarantee 
that an REV scale exists for a given rock. But in petroleum engineering, 
we always assume that an REV can be defined on the length scale of 
the gridblocks that are used in the numerical reservoir simulation codes. 
This will be discussed further in some later modules. 
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2.3. Saturation 
Reservoir rocks are never filled completely with oil, for reasons that will 
be discussed a later section of this module. Consider a rock that 
contains some oil and some water, as in Fig. 2.5. If the volume of water 
contained in a region of rock is Vw, the volume of oil is Vo, and the total 
volume of the pore space is Vp, then the saturation of each of these 
phases can be defined as the fraction of pore space that is occupied by 
that phase, i.e., 

Sw = Vw /Vp ,   So = Vo /Vp .               (1) 

The saturation of each phase must lie between 0 and 1. If oil and water 
are the only two phases present, then it is necessarily the case that  

Sw + So = 1.             (2) 

If there is also some hydrocarbon gas in the pore space, then  

Sw + So + Sg = 1.            (3) 

 
Fig. 2.5. Schematic diagram of a porous rock containing oil and water. 

3. Permeability and Darcy’s Law 
3.1. Darcy’s Law 
The ability of a porous rock to transmit fluid is quantified by the property 
called permeability. Quantitatively, permeability is defined by the “law” 
that governs the flow of fluids through porous media - Darcy’s law. This 
law was formulated by French civil engineer Henry Darcy in 1856 on the 
basis of his experiments on water filtration through sand beds. Darcy’s 
law is the most important equation in petroleum engineering.  
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Imagine a fluid having viscosity µ, flowing through a horizontal tube of 
length L and cross-sectional area A, filled with a rock or sand. The fluid 
pressure at the inlet is Pi, and at the outlet is Po, as in Fig. 3.1: 

 

Q 
A 

L 

P i 

P o 

P 

x 

 

Fig. 3.1. Experimental set-up for measuring the permeability of a porous 
rock or sand. 

According to Darcy’s law, the fluid will flow through the rock in the 
direction from higher pressure to lower pressure, and the volumetric 
flowrate of this fluid will be given by  

    
Q =

kA(Pi −Po )
µL

 ,            (1) 

where: Q = volumetric flowrate, with units of [m3/s] 

   k = permeability of the rock, with units of [m2]   

   A = cross-sectional area of the rock core, with units of [m2] 

   Pi , Po = inlet/outlet pressures, with units of [Pa] 

   µ = viscosity of the fluid, with units of [Pa s] 

   L = length of the core, with units of [m] 

This equation can be thought of as providing a definition of permeability, 
and it also shows us how to measure the permeability in the laboratory. 
This equation tells us that the flowrate is proportional to the area, 
inversely proportional to the fluid viscosity, and proportional to the 
pressure gradient, i.e., the pressure drop per unit length, ΔP/L. Note that 
the permeability is a property of the rock; the influence of the fluid that is 
flowing through the rock is accounted for by the viscosity term in Darcy’s 
law. 
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It is usually more convenient to work with the volumetric flow per unit 
area, q = Q/A. Darcy’s law is therefore usually written as 

    
q =

Q
A
=

k(Pi −Po )
µL

,         (2) 

where the flux q has dimensions of [m/s]. Please note that the flux is not 
the same as the velocity of the fluid particles*, and so it is perhaps 
easier to think of these units as [m3/m2 s].  

*Note: q is the flux based on the total nominal area of the core. But the 
fluid actually flows only through the pores, but not the grains! So, the 
total flux is given by Q = qA, but it can also be expressed as Q = vApore, 
where v is the actual mean velocity of the fluid, and Apore is area 
occupied by pores. Hence, qA = vApore, so v = q(A/Apore) = q/φ. So, if q is 
1 cm/hour in a reservoir of 10% porosity, for example, the actual mean 
velocity of the oil is 10 cm per hour. 

For the general case in which the flux may vary from point-to-point, we 
need a differential form of Darcy’s law. The differential version of 
equation (2) for horizontal flow is 

  
qx =

−k
µ

dP
dx

.          (3) 

The minus sign is included because the fluid flows in the direction from 
higher to lower pressure. 

For vertical flow, we must include a gravitational term in Darcy’s law. To 
see why, recall from fluid mechanics that if the fluid is stagnant, the 
pressure distribution will be 

  P = Po + ρgz ,          (4) 

where z is the depth below some datum level, and Po is the pressure at 
the datum level.  

So, there will be pressure gradient in a stagnant fluid, but there will be 
no flow. The “equilibrium pressure gradient” is, from eq. (4), 
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dP
dz

⎤ 

⎦ 
⎥ 
equilibrium

= ρg .         (5) 

It seems reasonable to assume that fluid will flow through the rock only if 
the pressure gradient exceeds the equilibrium value given by eq. (5). So, 
the actual driving force should be (dP/dz)−ρg. For vertical flow, we 
therefore modify eq. (3) as follows: 

    
qz =

−k
µ

dP
dz

− ρg
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ =

−k
µ

d(P − ρgz)
dz

.     (6) 

Actually, this form of the equation holds for horizontal flow, also, 
because in this case we can say that  

    
qx =

−k
µ

d(P − ρgz)
dx

=
−k
µ

dP
dx

,      (7) 

since d(ρgz)/dx = 0. 

A convenient way of simplifying the form of these equations is to write 
them in terms of the fluid potential Φ, defined by 

  Φ = P − ρgz ,           (8) 

in which case flow in an arbitrary direction n can be described by 

  
qn =

−k
µ

dΦ
dn

 .          (9) 

The above equations assume that the permeability is the same in all 
directions. But in most reservoirs, the permeability in the horizontal 
plane, kH, is different than the vertical permeability, kV; typically, kH > kV. 
The permeabilities in different directions within the horizontal plane may 
also differ, but this difference is usually not as great as between kH and 
kV. The property of having different permeabilities in different directions 
is known as anisotropy. 

For flow in an anisotropic rock, we must modify Darcy’s law, as follows: 

    
qx =

−kH

µ
dΦ
dx

, qz =
−kv
µ

dΦ
dz

.      (10) 
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Caution: if the rock is anisotropic, eq. (9) does not hold in an arbitrary 
direction, even if we use an appropriate value of k (see de Marsily, 
Quantitative Hydrogeology, 1986). The correct version of Darcy’s law for 
an anisotropic rock must be written in terms of the permeability tensor, 
which is a symmetric 3x3 matrix that has six independent components. 
However, this tensor form of Darcy’s law is not typically used in most 
reservoir engineering calculations. 

Another way to think about why fluid flow is controlled by the gradient of 
“  P − ρgz ” is as follows. You may recall from undergraduate fluid 
mechanics that Bernoulli’s equation, which essentially embodies the 
principle of “conservation of energy”, contains the terms 

    

P
ρ
− gz +

v2

2
=

1
ρ

P − ρgz +
ρv2

2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ,         (11) 

where  P/ρ is related to the enthalpy per unit mass, 
   gz is the gravitational potential energy per unit mass, 
   v2/2 is the kinetic energy per unit mass. 

Fluid velocities in a reservoir are usually very small, so the kinetic energy 
term is negligible, in which case the combination “  P − ρgz ” represents 
the “Bernoulli energy” per unit volume. It seems reasonable that the fluid 
would flow from regions of higher to lower energy, and, therefore, the 
driving force for flow should be the gradient (i.e., the rate of spatial 
change) of the quantity   P − ρgz . 

These considerations also warn us that we should not expect Darcy’s 
law to hold in cases where the kinetic energy term is not negligible. In 
fact, at high flowrates, we must modify Darcy’s law by incorporating a 
quadratic term q2 on the left-hand side of, say, eq. (3) on p. 8. The 
resulting more general equation, called the Forchheimer equation, is 
necessary in some situations, such as in some gas reservoirs, and 
particularly near the wellbore, where the velocities are higher (Bear 
1972). However, Darcy’s law is adequate in the vast majority of 
situations.  
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3.2. Units of Permeability 

Permeability has dimensions of “area”, so in the SI system it has units of 
[m2]. However, in most areas of engineering it is conventional to use a 
unit called the “Darcy”, which is defined by 

  1Darcy = 0.987×10−12 m2 ≈ 10−12 m2 .    (1) 

The Darcy unit (D) is defined such that a rock having a permeability of 1 
D would transmit 1 cm3 of water (which has a viscosity of 1 centiPoise) 
per second through a region that has a cross-sectional area of 1 sq cm, 
if the pressure drop along the direction of flow was 1 atm per cm.  

This definition is strange, in that it utilises different systems of units. 
Some people apply Darcy’s law by first converting flowrates to cm3/s, 
pressures to atm, etc., in which case you must use the value of k in 
Darcies. Another method is to first convert all parameters to SI units, in 
which case you must then use the value of k in units of m2.  

Typical ranges of the permeability of various rocks and sands are given 
in the following table: 

Rock type k (D) k (m2) 
coarse gravel 103 - 104 10-9 - 10-8 
sands, gravels 100 - 103 10-12 - 10-9 
fine sand, silt 10-4 - 100 10-16 - 10-12 
clay, shales 10-9 - 10-6 10-21 - 10-18 
limestones 100 - 102 10-12 - 10-10 
sandstones 10-5 - 101 10-17 - 10-11 
weathered chalk 100 - 102 10-12 - 10-10 
unweathered chalk 10-9 - 10-1 10-21 - 10-13 
granite, gneiss 10-8 - 10-4 10-20 - 10-16 

 
This table shows that the permeability of geological media varies over 
many orders of magnitude. However, most reservoir rocks have 
permeabilities in the range of 0.1 milliDarcies to 10 Darcies, and usually 
in the much narrower range of 10-1000 mD. Methods for measuring 
permeability in the laboratory will be discussed in the module on core 
analysis. 
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3.3. Relationship between Permeability and Pore Size 
The permeability depends on the porosity of the rock, and also on the 
pore size. Many models have been developed to try to relate the 
permeability to porosity, pore size, and other attributes of the pore 
space. 

The simplest model assumes that the pores are all circular tubes of the 
same diameter. Consider a set of circular pore tubes, each of diameter 
d, passing through a cubical rock specimen of side L, as in Fig. 3.2, with 
a pressure difference ΔP imposed across the two parallel faces (on the 
page and behind the page) of the rock.  

d L

 

Fig. 3.2. Idealised pore structure used to derive a relationship between 
permeability, porosity and pore size. 

According to Poiseuille’s equation for pipe flow (Dullien, Porous Media, 
1992), the flow through each tube is given by 

    

€ 

Q =
πd 4

128µ
ΔP
L .                (1) 

If there are N such pores, the total flow rate will be  

    

€ 

Q =
πNd4

128µ
ΔP
L .           (2) 

The total area of these pores, in the plane of the page, is       

€ 

Ap = Nπd2 /4 , 
and the porosity is       

€ 

φ = Ap /A = Ap /L2, where A is the macroscopic area 
normal to the flow. Hence, the total flowrate from (2) can be written as 

    

€ 

Q =
φd2A
32µ

ΔP
L .               (3) 
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If we compare this flowrate with Darcy’s law, Q = kAΔP/µL, we see that 
the permeability of this rock is k = φd2/32. Lastly, we note that an 
isotropic rock should have only one-third of its pores aligned in the x-
direction, one-third in the y-direction, etc. So, the permeability of this 
idealised porous rock is  

k = φ d 
2/96.             (4) 

A more realistic model, in which the orientations of the pores are 
randomly distributed in three-dimensional space, leads to the same 
result (Scheidegger, The Physics of Flow through Porous Media, 1974).  

Equation (4) is often written in terms of the “specific surface”, S/V, which 
is the total amount of surface area per unit volume of rock; the result is 

k = φ 
3/[6(S/V)2] .            (5) 

This is often called the Kozeny-Carman equation. One justification for 
this equation is that the permeability is the inverse of the “hydraulic 
resistivity”, and it is plausible that the resistance to flow, which is 
essentially due to viscous drag of the fluid against the pore walls, should 
be related to the amount of surface area of the pores. 

In some versions of the Kozeny-Carman equation, the factor 6 is 
replaced by another constant called the “tortuosity”, τ. The tortuosity is 
sometimes claimed to represent the ratio of the actual fluid flow path 
from the inlet to the outlet, to the nominal fluid flow path L, but this is not 
true, and it is better to think of τ as an empirical fitting factor.  

There have been many attempts to try to improve upon the Kozeny-
Carman equation, by incorporating more information about the 
distribution of pore sizes, interconnectedness of the pores, etc. For our 
present purposes, it is sufficient to understand that the permeability is 
proportional to the square of the mean pore diameter. 

3.4. Permeability of Layered Rocks 
Most reservoir rocks are layered, with each layer having a different 
permeability. If fluid flows through a layered rock, either in the vertical 
direction (perpendicular to the layering) or the horizontal direction 
(parallel to the layering), it is possible to define an effective permeability 
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that will allow us to treat the rock as if it were homogeneous, and use 
Darcy’s law in its usual form. 

For example, consider horizontal flow through a rock composed of N 
layers, each having permeability ki and thickness Hi, as in Fig. 3.3. 
Within each layer, water will flow horizontally, according to Darcy’s law: 

    

€ 

Qi = −ki (Hiw)
µ

ΔΦ
Δx  ,            (1) 

where w is the thickness into the page. 

H1
H2

HN

.....
k1
k2

kN

Q1
Q2

QN

ΔΦ

 

Fig. 3.3. Fluid flow parallel to the layering of a layered rock. 

The total flowrate is found by summing up the flowrates through each 
layer:  

    

€ 

Q = Qi
i=1

N
∑ = −ki (Hiw)

µ
ΔΦ
Δxi=1

N
∑ = −w

µ
ΔΦ
Δx kiHi

i=1

N
∑ .     (2) 

But if we treat the rock as a homogeneous rock mass with an effective 
permeability keff, we would write Darcy’s law as 

    

€ 

Q = −keff (Htotalw)
µ

ΔΦ
Δx =

−w
µ
ΔΦ
Δx keff Hi

i=1

N
∑ .        (3) 

If we compare eqs. (2) and (3), we see that the effective permeability of 
the layered rock is 

    
keff = kiHi

i=1

N
∑ Hi

i=1

N
∑ =

1
H

kiHi
i=1

N
∑  .         (4) 
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Hence, the effective permeability for flow along the layering is a 
weighted arithmetic mean of the individual permeabilities, weighted by 
the thickness of the layers. 

Now imagine vertical flow through this layered system (Fig. 3.4). We 
again start by writing Darcy’s law for each layer: 

  
Qi =

−kiA
µ

ΔΦ i
Hi

 ,           (5) 

where A is the area normal to the flow direction, i.e., in the horizontal 
plane.   

In steady-state, the flowrate through each layer is the same, but the 
potential drop will be different. So, we put Qi = Q in each layer, and re-
write eq. (5) in the form 

  
ΔΦ i =

−µQHi
Aki

 ,           (6) 

The total potential drop across all N layers is found by summing up the 
drops across each layer: 

    
ΔΦ = ΔΦi

i=1

N
∑ =

−µQHi
Aki

=
i=1

N
∑

−µQ
A

Hi
kii=1

N
∑ .     (7) 

H1
H2

HN

.....

k1
k2

kN

ΔΦ

Q
Area, A

 

Fig. 3.4. Fluid flow perpendicularly to the layering through a layered 
rock. 

The potential drop across an “equivalent” homogeneous rock of 
thickness H and area A would be 
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ΔΦ =

−µQH
Akeff

=
−µQ
Akeff

Hi
i=1

N
∑ .       (8) 

Comparison of eqs. (7) and (8) shows that 

    

keff =

Hi
i=1

N
∑

Hi
kii=1

N
∑

=
1
H

Hi
kii =1

N
∑

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

−1

.       (9) 

The expression on the right side of eq. (9) is called the weighted 
harmonic mean of the permeabilities. 

Equations (4) and (9) are similar to the equations for the overall 
conductivity of electrical resistors in parallel or series. However, this 
analogy can easily be remembered incorrectly, because the thickness 
also appears in the flow equations, and it appears in a different way in 
the two cases. Rather than try to remember the analogy between 
electrical circuits and flow through layered rocks, it is safer to derive the 
laws for the effective permeability from first principles (or to refer to these 
notes).  

Roughly speaking, the effective permeability for flow parallel to the 
layering is controlled by the permeability of the most permeable layer, 
whereas for flow transverse to the layering, the least permeable layer 
plays the controlling role. 

3.5. Permeability Heterogeneity 
In many reservoirs the heterogeneity is more complex than the simple 
layering shown in Figs. 3.3 and 3.4. Moreover, if oil is flowing towards a 
well, the flow geometry will be radial, and clearly the “series” and 
“parallel” models cannot be expected to apply.  

In order to calculate fluid flow in a reservoir using either analytical or 
numerical methods (both of which will be covered later in this course), it 
is necessary to replace the heterogeneous distribution of permeabilities 
with a single “effective” permeability. This difficult problem, which is 
known in petroleum engineering as “upscaling”, will be covered in detail 
in a later module.  
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For now, we only mention that the geometric mean often provides a 
good estimate of the effective permeability. The geometric mean of a 
permeability distribution is defined such that the natural logarithm of the 
geometric mean is the volumetrically–weighted average of the logarithm 
of the permeability. For example, if we have N different regions, 
randomly arranged, each with permeability ki and volume fraction ci, then 
the geometric mean is defined by 
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It can be proven that the geometric mean always lies between the 
arithmetic and harmonic means. Moreover, it can also be proven that, 
regardless of the geometric distribution of the local permeability, the 
effective permeability will always lie between the arithmetic and 
harmonic mean values (Beran, Statistical Continuum Theories, 1968). 
The fact that both the effective permeability and the geometric mean 
permeability are bounded by the arithmetic and harmonic means 
provides some justification for using the geometric mean as an 
approximation to the effective permeability, in cases in which the 
heterogeneity is “randomly” distributed. 

4. Surface Tension, Wettability, and Capillarity 
The pore space of a reservoir rock always contains a mixture of different 
fluids. The manner in which these fluids distribute themselves within the 
pore space depends on the physico-chemical interactions between the 
various fluids and rock minerals. We now discuss some of the concepts 
and definitions needed to understand the distribution of fluids in the pore 
space. 

4.1 Surface Tension 
Consider an interface between two fluids, which for concreteness we 
take to be a gas and a liquid, as shown below. Now consider a molecule 
within the liquid, such as molecule A on the right. This molecule has a 
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certain internal energy, u. There is an attractive force between this 
molecule and all adjacent liquid molecules; call it FLL. The attractive force 
between a liquid molecule and a gas molecule will be called FGL. 

FLL

FLL

FLL

FLL

FLL

FLL

FLL ABFGL

Gas Liquid

Interface

 

Now imagine that we slowly pull molecule A towards the interface. 
Initially, it will be attracted equally to all of its neighbouring liquid 
molecules, and the net force on it will be zero. As it nears the interface, 
the liquid molecule to its right will be pulling on it with force FLL, while the 
gas molecule to its left will be pulling with force FGL. For concreteness, 
assume that FGL < FLL. In this case, there will be a net rightward force 
acting on molecule A, due to its neighbouring molecules. If we want to 
pull A to the surface, we must exert a leftwards force on it, and thereby 
do work on it. It follows that when molecule A reaches the surface, it will 
have greater energy than it did when it was in the bulk liquid. 

The total excess energy that the liquid has due to its interface will 
obviously be proportional to the number of molecules at the surface, 
which is to say it will be proportional to the area of the interface. We can 
modify the usual thermodynamic expression for the internal energy to 
include surface energy as follows: 

U = TS – PV + γ A,         (1) 

where U is the internal energy, T is the temperature, S is the entropy, P 
is the pressure, V is the volume, A is the interface area, and γ is the 
“surface tension” between the liquid and the gas.  

If we treat the extensive variables (S,V,A) as the independent variables, 
then the differential of eq. (1) is 
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dU = TdS – PdV + γ dA .        (2) 

Imagine now that we have a thin film of liquid in a device such as shown 
below: 

F

L

b

Wire frame

Loop
 

If we pull slowly on the slidable bar with a force F, and move this bar by 
a distance dL, the work done by the external force on the liquid film will 
be FdL. By the first law of thermodynamics, the work done must equal 
the change in internal energy, so 

dU = dW = FdL .            (3) 

If we pull on the bar slowly and adiabatically (i.e., “reversibly”), the 
entropy change of the liquid film will be zero. Furthermore, the volume of 
the film is negligible, so PdV will be essentially zero. So, by eq. (2),  

dU = γ dA .               (4) 

But A = bL, and so dA = bdL, and (4) then gives  

dU = γ bdL .                (5) 

Equating expressions (3) and (5) shows that 

FdL = γ bdL  ⇒  F = γ b .         (6) 

In other words, the effect of surface tension is the same as if the 
interface were exerting a force of magnitude γ per unit length of the edge 
of the interface. Because of this interpretation, it is often convenient to 
treat an interface like an elastic membrane that exerts a force along its 
perimeter. Also, note that γ has dimensions of force/length, and so it has 
SI units of N/m. Typical values for oil/water contact are 0.01-0.05 N/m. 
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4.2 Capillary Pressure 
Because of surface tension, the pressures within two fluid phases that 
are in mechanical equilibrium with each other across a curved interface 
will not be equal. To prove this, consider a bubble of gas, of radius R, 
inside a liquid that is contained in a rigid, thermally-insulated container, 
as shown below. The pressure in the gas is PG, and the pressure in the 
liquid is PL; the surface tension of the gas-liquid interface is γ. 

PG

PL

2R

 

According to eq. (2), the total differential of the internal energy of this 
liquid + gas + interface system will be 

dU = TdS - PLdVL – PGdVG + γ dA .     (7) 

Note that we count the “volumetric” term for both the liquid and the gas, 
but we must count the interface only once. 

But VG + VL = Vcontainer = constant, so dVL = – dVG; hence, 

dU = TdS + PLdVG – PGdVG + γ dA .     (8) 

Now assume that the bubble grows slowly. Since the container is rigid 
and thermally insulated, dS = 0 and dU = 0 (i.e., no heat is added to the 
system, and no work is done on the system). Hence, 

γ dA = PGdVG – PLdVG = (PG – PL)dVG .      (9) 

But A = 4πR2, and so dA = 8π RdR; and V = 4π R3/3, so dV = 4π R2dR. 
Eq. (9) can therefore be written as 
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8π γ RdR = (PG – PL)4πR2dR ,        (10) 

which is equivalent to 

(PG – PL) = 2γ /R .         (11) 

This is the famous Young-Laplace equation, which states that the 
pressure inside the bubble is greater than the pressure outside, by an 
amount that is proportional to the surface tension between the two fluids, 
and inversely proportional to the radius of the bubble. 

This pressure difference is known as the capillary pressure, i.e., 

PG – PL = Pcap = 2γ /R .        (12) 

A capillary pressure difference exists when any two fluids are in contact, 
not necessarily a liquid and a gas. For example, if we have a bubble of 
oil surrounded by water, eq. (12) would hold, with the subscripts G and L 
replaced by o for oil and w for water. 

In a rock that is filled with oil and water, the interface between these two 
phases will be curved, and the pressures in the water and the oil phases 
will differ by an amount given by eq. (12), where we define R to be the 
mean radius of curvature of the interface.  

Because of the inverse dependence of capillary pressure on radius, 
capillary pressures are more important in rocks with smaller pores than 
for rocks having larger pores. 

4.3 Contact Angles 
Let’s consider what happens when two fluids are in contact with a solid 
surface, as in the figure below, where a drop of liquid is sitting on a solid 
surface, surrounded by gas: 

α

Gas

Liquid

Solid  
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The slanted line is the tangent to the gas-liquid interface at the point 
where the interface meets the solid surface. The angle between the solid 
surface and the tangent, measured by rotating the solid surface towards 
the tangent, passing through the liquid (by definition the angle is 
measured through the denser phase), is called the contact angle, α.  

Now let’s do a free-body diagram and force-balance on the region where 
the three phases (solid, liquid, gas) meet; this is exactly like the “method 
of joints” used in analysing structural trusses. When we “slice” through 
each interface, the part of the interface that is “removed” will exert a 
tension γ H on the “joint”, where H is the distance into the page. For each 
surface tension, we will use subscripts to denote the two fluids that form 
the interface; i.e., γLS is the surface tension of the liquid-solid interface, 
etc. 

α γLSγGS

γLG

Solid

Gas Liquid

 

Now let’s do a force-balance in the horizontal direction: 

ΣFhorizontal = γLS – γGS + γLG cosα = 0, 

=>  cosα  = (γGS – γLS) / γLG .                              (13) 

Several different cases can arise, depending on the relative magnitudes 
of the three surface tensions. 

Case 1:  0 < γGS – γLS < γLG: 
In this case, the interfacial energy of a gas-solid interface is greater than 
that of a liquid-solid interface, so, roughly speaking, the solid will “prefer” 
to be in contact with the liquid. The right-hand side of eq. (13) will lie 
between 0 and 1, so α will lie in the range 

0 < α < 90o .             (14) 
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In this case, we say that the liquid “wets” the solid surface, and the 
surface is called “water wet” (although a better name would be “water 
wettable”, since a “water wet’ surface can be completely dry!). 

Case 2:  – γLG < γGS – γLS < 0: 

In this case, the interfacial energy of a gas-solid interface is less than 
that of the liquid-solid interface, so the solid will “prefer” to be in contact 
with the gas. The right-hand side of eq. (13) will lie between –1 and 0, 
and so α will lie in the range 

90o < α < 180o .         (14) 

In this case, we say that the liquid does not wet the surface; it will sit on 
the surface in a bubble-shape, with very little interfacial contact between 
the liquid and the solid surface; see figure below: 

        

 

S o l i d 
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L i q u i d 
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α 
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Case 3:  |γGS – γLS| > γLG 

In this case, the right-hand side of eq. (13) does not lie between -1 and 
+1, and so there is no value of α that will satisfy equilibrium. 

To see what will happen in this case, consider the limiting case in which 
γGS – γLS = γLG, in which case cosα = 1, and α = 0o. In this case, the liquid 
will spread out over the surface, creating as much liquid-solid interfacial 
area as possible (example: oil on water!). 

If γGS – γLS > γLG, the same situation will occur, and the liquid will continue 
to flow until it forms a thin layer on the solid surface. By a similar 
argument, if γGS – γLS < – γLG, then the gas will spread out to cover as 
much of the solid surface as possible. 

Most reservoir rocks are preferentially “water-wet” as opposed to “oil-
wet”. If a water-wet rock is partially saturated with oil and water, the pore 
walls will “prefer” to be in contact with water rather than with oil, and so 
the oil will tend to exist in the form of blobs, as in Figure 2.5. 
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4.4 Capillary Rise 
Consider a bucket containing some oil and some water, as in figure (a) 
below. These two fluids are not miscible, and oil is usually less dense 
than water, so the oil will sit on top of the water. The air on top of the oil 
is at atmospheric pressure. 

 

Oil 

Air 

(a) 

Water 

 

 

Oil 

(b) 

Water 

Air 
A 
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Now imagine that we put a capillary tube of radius R in the bucket, 
composed of a water-wet material, as in figure (b). This tube can be 
thought of as a simple model of a porous rock. The water will rise up in 
the tube by some height, h, above the original oil-water contact.  

We now calculate the capillary rise, h, by performing a vertical force 
balance on the column of water in the tube, as in figure (c). 

The bottom of the column is pushed upwards by the pressure in the 
water at level C, acting over an area of πR2. With the sign convention 
that the z-axis decreases with depth, this force is –Pw(zC)πR2. 

A the top of the column is a downwards acting force due to the pressure 
in the oil at level zD; this force is +Po(zD)πR2. 

The surface tension exerts an upwards force along the entire wetted 
perimeter of the tube; its magnitude is T = 2π γowR. But it acts at an angle 
θ to the vertical, so its vertical component is –2π γowRcosθ. 

Finally, gravity acts downwards on the column of water with a force 

W = mg = ρwVg = ρwπ R2(zC – zD)g .       (15) 
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Summing all the vertical forces to zero gives 

–Pw(zC)πR2 + Po(zD)πR2  – 2πγ Rcosθ + ρwπ R2(zC – zD)g = 0 .   (16) 

The pressure in the oil at location D is equal to atmospheric pressure 
plus the pressure due to a column of oil of height (zD – zA), i.e., Po(zD) = 
Patm + ρog(zD – zA). Similarly, we can see that Pw(zC) = Patm + ρog(zB – zA) 
+ ρwg(zC – zB). Inserting these expressions into eq. (16) gives 

–[Patm+ρog(zB – zA)+ρwg(zC – zB)]πR2 + [Patm+ρog(zD – zA)]πR2 

–2πγowRcosθ + ρwπ R2(zC – zD)g = 0 ,         (17) 

which can be solved to find the capillary rise, h: 

(zB – zD) = h = 2γow cosθ /(ρw – ρo)gR .     (18) 

So, the height to which water would rise in a tube of radius R is 
proportional to the surface tension between the water and oil, and is 
inversely proportional to the radius of the tube. 

Now let’s look at the difference in pressures between the oil at depth D 
(outside the tube), and the water at depth D (inside the tube). By 
definition, this is the capillary pressure at depth D. 

First, recall that Po(zD) = Patm + ρog(zD – zA). Next, by starting at point A, 
doing down to point B in the oil, and then going back up to point D in the 
water, we can find that Pw(zD) = Patm + ρog(zB – zA) – ρwg(zB – zD). Hence,  

Po(zD) – Pw(zD) = Patm + ρog(zD – zA) – Patm – ρog(zB – zA) + ρwg(zB – zD) 

= (ρw – ρo)g(zB – zD) = (ρw – ρo)gh = 2γow cosθ /R.    (19) 

In other words, Pcap = 2γow cosθ /R. This is identical to the Young-
Laplace equation that we derived earlier for an oil bubble in water, 
modified to account for the contact angle. Note also that the capillary 
pressure at any height h is equal to (ρw – ρo)gh. The theory we have just 
described is referred to as “capillary-gravity equilibrium”. 
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4.5 Oil-Water Transition Zone 
Most oils are less dense than water, so we might expect that a reservoir 
would contain only oil down to a certain depth, and only water below that 
depth, as would occur in a bucket containing oil and water. Although it is 
true that the rock is usually fully saturated with water below a certain 
level, on top of this zone is an oil-water transition zone, in which the 
water saturation decreases gradually with height. We can use the 
concept of capillary rise in a tube, along with a modified form of the 
parallel-tube model of a porous medium, to understand the existence of 
this oil-water transition zone in a reservoir. 

Let’s return to our parallel tube model of a porous rock, but now imagine 
a distribution of different radii. Now let’s place this porous rock into our 
bucket of oil and water: 

 

Oil 

Water 

B 

A 

C 

 

According to eq. (19), water would rise very slightly into a pore that has 
a large radius, but would rise very high in a small pore. If we have a 
distribution of pore radii, then at an elevation such as (A) in the figure, all 
of the pores would be filled with water, and the water saturation would 
be Sw = 1. At elevation (B) some of the pores will be filled with water, 
and others with oil, so the water saturation will be 0 < Sw < 1. Finally, at 
a high enough elevation, such as C, all the pores will be filled with oil, 
and Sw = 0.  

Hence, the water saturation will be a decreasing function of the height h 
above the “free water level” (FWL), which is defined as the highest point 
in the reservoir where the capillary pressure is zero; see the figure 
below.  
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According to our capillary tube model shown on the previous page, the 
water saturation will actually be equal to 1 up to some finite height above 
the free water level that is controlled by the radius of the largest pore. 
The highest point at which the saturation is equal to 1 is known as the 
“oil-water contact” (OWC). Note that in a water-wet reservoir, the oil-
water contact is above the free water level. 

 

Note from eq. (19) that the “capillary pressure” is given by 

Pcap = PG(H) – PL(H) = (ρw – ρo)gh,      (20) 

and so the y-axis in the figure above essentially represents both the 
capillary pressure, and the height above the free water level, which differ 
only by the multiplicative factor (ρw – ρo)g. Hence, this graph represents 
the water-oil transition zone, but also represents the capillary pressure 
function as a function of saturation..  

Note that the relation Pcap = (ρw – ρo)gh holds regardless of the specific 
rock geometry, assuming only that the rock is water wet. However, the 
precise shape of the Pcap(Sw) curve shown above depends on the pore 
geometry, and specifically on the pore-size distribution. 

For the simple bundle-of-parallel-tubes model, one can derive an exact 
relationship between the Pcap(Sw) curve and the pore-size distribution. 
For a real rock, the relationship is not so simple, but it is always true that 
a narrow pore-size distribution corresponds to a Pc curve with a nearly 
horizontal shape, whereas a broader pore-size distribution yields a curve 
that increases more gradually, as shown below.  
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The extreme case of a bundle of tubes in which all pores had the same 
size would yield a capillary pressure function that was essentially a 
horizontal line, at the value Pcap = 2γow cosθ /R. 

 

Note that whereas the bundle-of-tubes model predicts that the water 
saturation becomes zero at some (large) height above the free water 
level, in a real rock the water saturation never falls below some non-zero 
value Swi, known as the irreducible water saturation, which is typically 
about 10%. Hence, there is generally no region in a water–wet reservoir 
that contains only oil but no water! 

4.6 Leverett J-function 
The capillary pressure function Pcap(Sw) is often discussed in terms of 
dimensionless form known as the Leverett J-function. We can see how 
this function arises by starting again with our bundle-of-tubes model. 

Recall that for the simplest form of the bundle-of-tubes model, in which 
every tube has the same radius R, the capillary pressure is given by Pcap 
= 2γow cosθ /R. In terms of the pore diameter, we can say that Pcap = 
4γow cosθ /d. But we also know that this bundle-of-tubes model predicts 
that k = φ d2/96. So, the pore diameter can be expressed as d = 
(96k/φ)1/2. If we plug this into our equation for Pcap, we find, after some 
rearrangement,  

6
1

cos
1 =capPk

φθγ
 .         (1) 
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The left-hand side of eq. (1) is essentially a dimensionless way of writing 
the capillary pressure function. For the bundle-of-uniform-tubes model, 
the right-hand side is a constant, but we know that this model is an 
oversimplification for real rocks. Moreover, we already saw above that 
capillary pressure in a rock varies with the saturation. 

So, we can generalise relation (1) by replacing the constant on the right 
by some dimensionless function of saturation, which Leverett (Petrol. 
Trans. AIME, 1941) called the “J-function”. This function will be a 
property of the rock, and its specific shape depends, in a complicated 
way, on the details of the pore geometry. We then express the capillary 
pressure in the form 

)cos
1

wcap SJPk (=
φθγ

.           (2) 

The logic that underpins the use of the J-function is that, although 
properties such as k, φ and Pcap may vary throughout a sedimentary unit, 
it is generally true that the J-function, as defined by eq. (2), is nearly 
invariant throughout the unit. Hence, if we measure Pcap for one core, 
and convert it into a J-function, we can then use relation (2) to estimate 
Pcap for other rocks in same unit.  

Another use of J-function is to take capillary pressure curves that are 
measured in the lab and convert them into capillary pressure curves for 
the reservoir. Let’s say that we measure Pcap in the lab using two fluids 
that have certain values of γ and θ, say γlab and θlab. Then, eq. (2) takes 
the form 

      

€ 

1
γ lab cosθlab

k
φ

Pcap
lab = J(Sw ) .       (3) 

In the reservoir, this rock would have the values of same k and φ, but the 
fluids would be different, so there will be different values of γ and θ, say 
γres and θres. Hence, in the reservoir we can say that  

      

€ 

1
γres cosθres

k
φ

Pcap
res = J(Sw ) .       (4) 

If we equate (3) and (4), we can rearrange and say that 

    

€ 

Pcap
res = Pcap

lab γ res cosθres
γ lab cosθlab

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟  .          (5) 
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This equation shows how capillary pressures measured on a core in the 
lab can be converted to the values that would occur in the reservoir. 

5. Two-Phase Flow and Relative Permeability 
5.1 Concept of Relative Permeability 
In section 3 we defined and discussed the concept of permeability, in the 
context of a rock that is fully saturated with a single fluid phase. But we 
learned in section 4 that reservoir rocks always contain at least two fluid 
phases, oil and water, and sometimes three phases, oil, water and gas. 
So, the concept of permeability must be extended to apply to situations 
in which more than one phase is present in the pore space.  

The most obvious way to generalise Darcy’s law to account for two-
phase flow conditions is to assume that the flow of each phase is 
governed by Darcy’s law, but with each parameter – pressure, viscosity 
and permeability itself – being specific to the phase in question, i.e.,  

  

€ 

qw = −kw
µw

dPw
dx ,    

  

€ 

qo = −ko
µo

dPo
dx ,                                (1) 

where µw is the viscosity of water, kw is the effective permeability of the 
rock to water, etc. The pressure in the oil and water phases differ from 
each other by the capillary pressure, which is a function of saturation. 

However, it is more common to express the effective permeability of the 
rock to water as the product of the single-phase permeability, k (also 
known as the absolute permeability), and another parameter, krw, known 
as the relative permeability of the rock to water; likewise for oil. Note that 
the relative permeability function is dimensionless. Eq. (1) can then be 
written as 

  

€ 

qw = −kkrw
µw

dPw
dx ,    

  

€ 

qo = −kkro
µo

dPo
dx .                             (2) 

The relative permeabilities of each phase are functions of the phase 
saturations. Obviously, if part of the pore space is occupied by water, 
then the ability of oil to flow will be hindered, and vice versa. Hence, the 
relative permeability of a phase will be a monotonically increasing 
function of the saturation of that phase. 
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The precise shapes of these curves depend on the process that is 
occurring. Specifically, they have a different shape during imbibition, 
which is when a wetting phase displaces a non-wetting phase, than they 
have during drainage, which is when the non-wetting phase displaces 
the wetting phase. 

Let’s consider imbibition, such as occurs, for example, when we inject 
water into a water-wet reservoir to displace the oil. This process will start 
at Sw = Siw, where Siw is the irreducible water saturation, which is the 
water saturation that remained in the rock after oil had originally 
migrated into the reservoir. (The saturation Sw = Siw is also precisely the 
point at which the capillary pressure curve become infinite.) Almost by 
definition, krw will be zero when Sw = Siw. On the other hand, when Sw = 
Siw, kro will be finite, but less than 1, as in the figure below. 

10

krw
kro

Siw Sw
1-Sor

1

 
Now imagine that we inject water into the rock, thereby increasing Sw. 
Since the relative permeability of a phase is an increasing function of the 
saturation of that phase, kw will increase, and ko will decrease. This 
imbibition process will continue until we reach a specific oil saturation, 
known as the residual oil saturation, So = Sor, at which ko has dropped to 
zero. The “oil permeability” ko becomes zero at a finite value of the oil 
saturation, not at zero oil saturation, as one might have thought.  

These two values, Siw and Sor, are also known as the relative 
permeability end-points, and the relative permeability values at these 
saturations are known as the end-point relative permeabilities. 

The precise shapes of the relative permeability curves depend on the 
details of the pore structure of the rock. Power-law functions are often 
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found to be useful in fitting these curves. Note that relative permeability 
curves are never linear functions of the saturation, although this simple 
linear form is sometimes assumed, particularly in fractured reservoirs, as 
we rarely have data on the relative permeabilities of the fractures. 
Finally, note that at any given saturation, the sum kw + ko is not equal to 
one, but is always less than one. 

5.2 Irreducible Saturations 
The facts that Siw was not equal to zero after primary drainage (when the 
oil first displaced the water to form the oil reservoir), and Sor is not zero 
after imbibition (when water is injected to flood out the oil), are of the 
utmost importance in reservoir engineering. But it is not obvious that 
these residual saturations will not be zero. And, in contrast to many 
other rock properties, which can, at least partially, be understood using 
the parallel-tube model of a porous rock, irreducible/residual saturations 
cannot be explained by the parallel-tube model. In fact, the parallel tube 
model would erroneously predict that Siw = Sor = 0. The phenomenon of 
irreducible/residual saturations is intimately related to the heterogeneity 
and interconnectedness of the pores in a rock. 

We can gain a qualitative understanding of this phenomenon using the 
simplest pore-space model that incorporates some degree of 
heterogeneity and interconnectedness. Consider a pore doublet, as 
shown in figure (a) below, in which one pore branches off into two pores 
of different diameter, which then re-merge to form a single pore: 
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Imagine that this doublet is initially filled with oil, as in (a). We now slowly 
inject water from the left. According to the Young-Laplace equation, 
(4.2.11), the capillary pressure in the each pore is inversely proportional 
to the pore radius, i.e., it is proportional to R-1.  

But according to Poiseuille’s equation, (3.3.1), the “permeability” of a 
pore is proportional to R2. So, from Darcy’s law, eq. (3.1.3), the mean 
velocity in either pore is proportional to R-1×R2 = R. Hence, the water 
moves faster into the larger pore than into the smaller pore, as shown in 
figure (b). 

When the water in the larger pore reaches the end of the doublet, it can 
enter the smaller pore from the far end, as in figure (c), thereby trapping 
some of the oil behind it. This is a simple demonstration of why the 
residual oil saturation, after the imbibition of water, is not equal to zero. 

6. Electrical Resistivity 
The electrical resistivity of a rock is not a property that directly affects oil 
production, and it does not actually appear in the governing equations of 
fluid flow in a reservoir. But it is nevertheless very important in reservoir 
engineering, because it can be measured in situ using logging tools, and 
its value can then be used to infer the oil saturation. Practical issues 
related to the measurement of resistivity using logging tools, and the 
interpretation of these measurements, will be discussed in detail in the 
module on log analysis. In the present module, we will discuss some of 
the basic concepts and definitions related to electrical resistivity 
measurements. 

The flow of electrical current is governed by Ohm’s law, which states that 
the current, I, flowing through any conductor, is equal to the voltage 
drop, ΔV, divided by the resistance, R: 
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R
VI Δ=  .           (1) 

Electrical charge has units of Coulombs, so current, which is the flow of 
charge, has units of Coulombs/second. Resistance therefore has units of 
volt-seconds/Coulomb, which are also known as Ohms. In this form, R 
will depend on the material properties, but also on the shape and size of 
the conductor.  

Now consider a cylindrically-shaped conductor, of length L and cross-
sectional area A, as in the figure below. All other factors being equal, the 
current will be proportional to A, and inversely proportional to L. So, we 
expect that the resistance can be expressed as  

A
LR ρ=  ,            (2) 

where ρ is the resistivity, which is an intrinsic property of the material, 
and does not depend on the geometry of the conductor. The resistivity 
has units of Ohm-meters. 

 L 
A 

I 

ΔV  
Hence, eq. (1) can be written as 

L
VAI Δ=

ρ
 .          (3) 

We can also define the conductivity as σ = 1/ρ, in which case we can 
write (3) as  

L
VAI Δ=σ  .         (4) 

In this form, it is clear that Ohm’s law is mathematically analogous to 
Darcy’s law, with current (flow of electrical charge) being analogous to 
fluid flux, voltage drop analogous to pressure drop, and the electrical 
conductivity is analogous to the fluid mobility, k/µ. 
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The electrical conductivities of the minerals that typically form reservoir 
rocks is very low, as is the conductivity of hydrocarbon fluids. But the 
water that partially fills the pore space of reservoir rocks always contains 
salts such as NaCl or KCl, which render the water conductive. The 
conductivities of these so-called “brines” are typically ten orders of 
magnitude higher than that of the rock minerals. Hence, electrical 
current in a reservoir rock will flow mainly through that portion of the pore 
space that is occupied by water. 

As with permeability and capillary pressure, we can get some idea of 
how the electrical conductivity depends on pore structure by appealing 
to the bundle of parallel tubes model.  

Consider such an idealised rock, as below, where A is the total area of 
the core, and the An are the areas of the individual pores.  

 

A 

A1 

A2 

A3 
 

Imagine that the pores are all filled with a brine of conductivity σw. If the 
core has length L into the page, and the rock is subjected to a voltage 
drop ΔV along its length, then the current through the n-th tube will be  

L
VAI nwn

Δ=σ  .          (5) 

The total current is the sum of the currents through each tube: 

AL
VAL

VAL
V

L
VAII wwnwnw pores

N

n

N

n

N

n
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=== 111

. (6) 

If we compare this with Ohm’s law, eq. (4), we see that the effective 
conductance of the fluid-saturated rock is φσσ weff = . This quantity 
depends on the rock and on the brine. But we are not really interested in 
the brine, so it would be preferable to extract out a parameter that 
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reflects only the properties of the rock. We do this by defining – in 
general, independent of any pore geometry model – the formation 
resistivity factor, also known as the formation factor, as the ratio of the 
conductance of the brine to the effective conductance of the brine-
saturated rock: 

    

€ 

F ≡
σ (brine)

σ (brine −saturatedrock)
.           (7) 

The resistivity is the inverse of the conductivity, so we can also say that  

(brine)
rock)saturated(brine

ρ
ρ −

=F .           (8) 

For our parallel-tube model, σeff = σwφ, and so F is predicted to be equal 
to 

φσ
σ 1

rock)saturated(brine
(brine)

==
−

F .      (9) 

Note that in contrast to the permeability, which has a strong dependence 
on pore size, the formation factor has no dependence on pore size, 
according to the parallel tube model. 

If we make the same argument as we did in the case of permeability, 
i.e., only one-third of the pores are aligned in the direction of the voltage 
drop, then we would find 

    

€ 

F =3φ−1.               (10) 

This parallel-tube model correctly tells us that F will be larger for less 
porous rocks, but otherwise it is not accurate enough for engineering 
purposes. Experimental measurements of F tend to show a stronger 
dependence on porosity than the –1 power that appears in eq. (10). In 
1942, Archie (Petrol. Trans. AIME, 1942) proposed generalising eq. (10) 
by replacing both the factor of 3 and the exponent –1 with parameters 
that may vary from rock to rock. The result is the famous “Archie’s law”: 

mbF −= φ .          (11) 

The parameter b is often called the tortuosity, and m is called the 
cementation index, but these names are outdated and not very useful.  
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Archie’s law in the form of (11) can fit many sets of resistivity data 
consisting of different rocks from the same reservoir. For sandstones, 
the exponent m usually lies between 1.5 and 2.5, and is often close to 2; 
for carbonates, it can be as large as 4. The parameter b is usually close 
to 1.0.  

The figure below shows some data on Vosges and Fontainebleau 
sandstones, from Ruffet et al. (Geophysics, 1991), fit with b = 0.496, and 
m = 2.05: 
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Although Archie’s “law” is extremely useful in reservoir engineering, it 
should nevertheless be remembered that it is not a fundamental law of 
rock physics, but is merely a convenient curve-fit that is usually 
sufficiently accurate for engineering purposes.  

It might appear that we could use Archie’s law to estimate porosity, but 
there are much more accurate ways to estimate φ, as you will learn in 
the core analysis and log analysis modules. The usefulness of Archie’s 
law, and of resisitivity measurements in general, is in estimating water 
saturation. To understand how this is possible, we need to consider 
rocks that are partially saturated with water, and partially with oil.  

For rocks that contain oil and water, we use the following generalisation 
of Archie’s law, which is sometimes called Archie’s second law: 

    

€ 

F =bφ−m(Sw )-n,         (12) 

   
   

 F
or

m
at

io
n 

Fa
ct

or
, F

 



MSc in Petroleum Engineering/Geoscience/Geophysics       Rock Properties     RW Zimmerman     Page 38 
   
 

  
Imperial College London                                                          Department of Earth Science and Engineering 

where n is called the saturation exponent. In water-wet rocks, n is often 
close to 2, but in oil-wet rocks it may be as large as 10. If one assumes 
that n is constant throughout a reservoir, or at least throughout a certain 
rock unit, then eq. (12) implies that electrical resistivity measurements in 
a borehole can yield estimates of the water saturation, and hence the oil 
saturation. This will be discussed in detail in the well logging module.  

The scenario described above is more complicated in shaly sands. In 
these rocks, the sand grains are coated by clay platelets. An ionic 
electrical double-layer then builds up along the surface of these plates. 
This surface layer allows another path for current flow, separate from the 
current flow through the brine-saturated pores that we discussed above. 
To a good approximation, this surface current can be thought of as being 
in parallel with the pore-current, and so it adds an extra component to 
the conductivity of the rock. This extra conductivity depends on the 
electrochemical properties of the clays, but not on the intrinsic 
conductivity of the brine. The resulting generalisation of eq. (7) for shaly 
sands is 

( )vBQ
F

+=− w
1rock)saturated(brine σσ ,      (13) 

where Qv is the charge on the double-layer, per unit volume, and B is a 
constant. Equation (7), called the Waxman-Smits equation, will be 
discussed further in the core analysis module. 

7. Fluid and Pore Compressibility  
7.1 Fluid Compressibility  
Amounts of oil are usually discussed in terms of barrels, which is a 
measurement of volume. Likewise, gas is often measured in terms of 
cubic feet. But the amount of volume taken up by a given mass of oil will 
depend on the pressure to which the oil is subjected. When we say that 
a well produces 100 barrels of oil a day, for example, we are measuring 
these barrels at “atmospheric pressure”, which is 14.7 psi, or 101 kPa in 
SI units.  

The relationship between the volume and pressure of a fluid is quantified 
in terms of the fluid compressibility, Cf, which is defined as the fractional 
derivative of volume with respect to pressure (at constant temperature, 
T, and for a fixed amount of mass): 



MSc in Petroleum Engineering/Geoscience/Geophysics       Rock Properties     RW Zimmerman     Page 39 
   
 

  
Imperial College London                                                          Department of Earth Science and Engineering 

    

€ 

Cf = − 1
V

∂V
∂P
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
T

.          (1) 

Density is the inverse of volume, i.e., ρ = 1/V, so it follows from the chain 
rule of calculus that the compressibility can also be defined as  

    

€ 

Cf = 1
ρ

∂ρ
∂P
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
T

.          (2) 

The dimensions of Cf are 1/pressure, and so the units are 1/psi or 1/Pa. 
The compressibility of a fluid usually varies with pressure, but typical 
values of Cf are 0.5×10-9/psi for water, and about 1.0×10-9/psi for oil. 

Note: when oil is taken from its pressurised state in the reservoir, up to 
the surface where it is at atmospheric pressure, any gas that had been 
dissolved in the oil will be released, and the oil will actually shrink! This 
phenomenon cannot be described in terms of the compressibility of 
liquid oil. This shrinkage must be taken into account when doing material 
balance calculations on a reservoir. However, eqs. (1) and (2) are 
applicable to the small pressure changes that occur to the oil when it is 
flowing inside the reservoir. 

7.2 Pore Compressibility  
As oil flows from the reservoir to a well, two changes occur at each 
location in the reservoir: the pressure in the oil decreases, and the pore 
space contains less oil. It is important to be able to relate the change in 
the amount of oil stored in the pore space of the reservoir, to the change 
in oil pressure. This relation involves the fluid compressibility, but also 
involves a petrophysical property known as the pore compressibility. 

Consider a porous rock as shown below, with total (bulk) volume Vb, 
pore volume Vp, and mineral grain volume Vm. Imagine that the rock is 
compressed from the outside by a hydrostatic pressure Pc, called the 
“confining pressure”. Inside the pore space is a fluid at some “pore 
pressure”, Pp, which acts over the walls of the pores. The confining 
pressure tends to compress both the bulk rock and the pores, whereas 
the pore pressure tends to cause Vb and Vp to increase. (The confining 
pressure Pc, which acts on the rock, should not be confused with the 
capillary pressure Pcap, which acts within the fluid). 
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Recall that for a homogeneous solid or liquid of volume V, subjected to a 
confining pressure P, the compressibility, C, is defined as 
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For a porous rock, we need to consider two volumes, the pore volume 
and the bulk volume, and two pressures, the pore pressure and the 
confining pressure. So, we can define four different compressibilities 
(see Zimmerman, Compressibility of Sandstones, 1991): 
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The first subscript refers to the volume in question, either “bulk” or 
“pore”, and the second subscript refers to the pressure that is varying, 
either “confining” or “pore”. The pressures written outside the derivative 
indicates that this pressure is held constant. 

The pore compressibility with respect to changes in pore pressure, ppC , 
is useful in material balance calculations. The numerical sum of the fluid 
compressibility and the pore compressibility, which is known as the total 
compressibility,   

€ 

Ct =Cf +Cpp , appears in the pressure diffusivity equation 
that is used in well-test analysis. The bulk compressibility   

€ 

Cbc  influences 
the velocity of seismic compressional waves. The bulk compressibility 
  

€ 

Cbp  is relevant to subsidence calculations. 
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The numerical values of the various porous rock compressibilities are 
controlled, as are all petrophysical properties, by the geometry of the 
pore space. Roughly speaking, flat, crack-like pores are very 
compressible, whereas fatter pores in the shape of circular tubes are not 
very compressible. 

The numerical values of the pore compressibility vary from one rock type 
to another. Furthermore, the pore compressibility often varies strongly 
with the pore pressure. Roughly, one can say that in a sandstone 
reservoir, the pore compressibility ppC  is on the order of about 2×10-

6/psi, or 3×10-4/MPa. More details and numerical values can be found in 
Compressibility of Sandstones by Zimmerman (1991), and The Rock 
Physics Handbook by Mavko, Mukherji and Dvorkin (2009). 
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Rock Properties Questions 

1. Consider a reservoir that is shaped like a circular disk, 10 m thick, 
and with a 5 km radius in the horizontal plane. The mean porosity of the 
reservoir is 15%, the water saturation is 0.3, and the oil saturation is 0.7.  

(a) Ignoring the expansion of the oil that would occur when it is produced 
from the reservoir, how many barrels of oil are in this reservoir? One 
barrel = 0.1589 m3.  

(b) If the density of the oil is 900 kg/m3, how much oil (in kg) is contained 
in the reservoir? 

2. In a laboratory experiment, a pressure drop of 100 kPa is imposed 
along a core that has length of 10 cm, and a radius of 2 cm. The 
permeability of the core is 200 mD, its porosity is 15%, and the viscosity 
of water is 0.001 Pa s.  

(a) What will be the volumetric flowrate Q of the water, in m3/s?  

(b) What is the numerical value of q = Q/A, in m/s? 

3. Imagine that the rock in problem 2 can be represented by the parallel 
tube model.  

(a) Estimate the mean pore diameter, d, using eq. (3.3.4). 

(b) What is the mean velocity, v, of the water particles in the rock?  

(c) The importance of the inertia term, relative to the pressure term in, 
say, eq. (3.11), can be quantified by the Reynolds number, defined as 
Re = ρvd/µ. What is the Reynolds number in this experiment? Note that 
Darcy’s law is only accurate when Re < 1 (Bear, 1972). 

4. Consider a layered reservoir consisting of alternating layers, 1 m 
thick, of rock 1, rock 2 and rock 3, where k1 = 1000 mD, k2 = 100 mD, 
and k3 = 10 mD.  

(a) What is the effective permeability of this rock, if fluid is flowing parallel 
to the layering? 
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(b) What is the effective permeability of this rock, if fluid is flowing 
perpendicular to the layering? 

(c) Imagine that the reservoir consists of these three rock types, in equal 
volumetric proportions, but occurring in a “random” spatial distribution. 
Estimate the effective permeability in this case.  

5. Consider a small blob of oil surrounded by water. The surface tension 
between the oil and water is 0.02 Nm. If the radius of the blob is 0.05 
mm, what is the value of the capillary pressure? Is the pressure higher in 
the oil or the water? 

6. Consider again the parallel tube model of a rock. Assume that the 
diameter of each pore is 20 µm, γ = 0.02 Nm, ρo = 900 kg/m3, ρw = 1000 
kg/m3, the contact angle θ is 45o, and g = 9.8 m/s2. If this rock is placed 
in a tank containing water overlain by oil, as in the figure in the notes, to 
what height will the water rise in the pores? 

7. Consider a homogeneous reservoir with φ = 0.20, k = 200 mD, water-
oil surface tension of γ = 0.03 N/m, and oil/water contact angle of 35o. 
The oil density is 850 kg/m3, and the water density is 1050 kg/m3. In the 
lab, we determine that the irreducible water saturation occurs when the 
J-function is equal to 4.23. What will be the height of the oil-water 
transition zone in the reservoir? Hint: use eq. (2) on p. 29 to convert 
J(Swi) to Pc, and use eq. (20) on p. 27 to convert Pc to height.  

 


